Applications of inoculants to treat drought stress in plants

Review Article Vol. 9 Issue 4 (2026), e2026151 | Published in 09 September 2025

Applications of inoculants to treat drought stress in plants

Link: https://10.31893/multirev.2026151

  • AbstractAll climatic factors, including temperature, rainfall, humidity, wind, and solar radiation, significantly influence agricultural activities. These environmental conditions determine the types of crops that can be grown, the length of growing seasons, and the overall productivity of agricultural systems. While some agricultural areas around the world rely on artificial irrigation, the vast majority still depend heavily on natural rainfall patterns. This reliance makes agriculture particularly vulnerable to climate variability and change. Climate change is expected to increase the frequency and severity of extreme weather events, such as droughts and heatwaves, which will lead to higher water demands from crops while simultaneously reducing water availability. This imbalance between water supply and demand is likely to result in reduced crop yields and lower production capacity in many regions. One of the most critical challenges faced by agriculture under climate change is drought. Drought stress severely limits plant growth and productivity by affecting physiological and biochemical processes. However, plant growth-promoting bacteria (PGPB) offer a promising solution to this issue. These beneficial microbes enhance plant tolerance to drought by regulating gene expression and modulating hormone activity in plants. They also influence the stress-induced enzymatic system, alter phytohormone levels, and contribute to the accumulation of protective metabolites. These mechanisms are expressed through phenotypic changes in plant architecture, growth rate, root-to-shoot ratio, hydraulic conductivity, and water conservation abilities. Additionally, PGPB support plant cell protection under stressful conditions. This review aims to highlight the role of plant growth-promoting bacteria in mitigating the adverse effects of climate-induced stress on crops. By exploring how these microorganisms interact with plants to enhance resilience, it provides insight into potential applications of microbial biotechnology in agroecosystems. Ultimately, the integration of such microbial strategies into farming practices can contribute to more sustainable and climate-resilient agriculture.

Keywords:
 sustainable agriculture
 biofertilizers
 PGPB
 endophytic bacteria
 abiotic stress
 inoculant

  • References
    1. Abbasi, S., Sadeghi, A., & Safaie, N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Scientia Horticulturae, 265, 109206. https://doi.org/10.1016/j.scienta.2020.109206
    2. Aguiar, N. O., Medici, L. O., Olivares, F. L., Dobbss, L. B., Torres-Netto, A., Silva, S. F., Novotny, E. H., & Canellas, L. P. (2016). Metabolic profile and antioxidant responses during drought stress recovery in sugarcane treated with humic acids and endophytic diazotrophic bacteria. Annals of Applied Biology, 168, 203–213. https://doi.org/10.1111/aab.12256
    3. Ahmed, A., & Hasnain, S. (2010). Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum. Pure and Applied Chemistry, 82, 313–319. https://doi.org/10.1351/PAC-CON-09-02-06
    4. Ahmed, B., Shahid, M., Syed, A., Rajput, V. D., Elgorban, A. M., Minkina, T., Bahkali, A. H., & Lee, J. (2021). Drought tolerant Enterobacter sp./Leclercia adecarboxylata secretes indole-3-acetic acid and other biomolecules and enhances the biological attributes of Vigna radiata (L.) R. Wilczek in water deficit conditions. Biology, 10, 1149. https://doi.org/10.3390/biology10111149
    5. Akhtar, M. S., & Siddiqui, Z. A. (2009). Effect of phosphate solubilizing microorganisms and Rizobium sp. on the growth, nodulation, yield and root-rot disease complex of chickpea under field condition. African Journal of Biotechnology, 8, 3489–3496. http://www.academicjournals.org/AJB
    6. Akram, N. A., Waseem, M., Ameen, R., & Ashraf, M. (2016). Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: Some key physio-biochemical traits. Acta Physiologiae Plantarum, 38, 3. https://doi.org/10.1007/s11738-015-2018-1
    7. Alam, M. M., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2014). Trehalose-induced drought stress tolerance: A comparative study among different Brassica species. Plant Omics, 7, 271–283. https://www.pomics.com/hassanuzzaman_7_4_2014_271_283.pdf
    8. Alam, S., Khalil, S., Ayub, N., & Rashid, M. (2022). In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganism (PSM) from maize rhizosphere. International Journal of Agriculture and Biology, 4, 454–458. http://www.ijab.org
    9. Ali, B., Wang, X., Saleem, M. H., Sumaira Hafeez, A., Afridi, M. S., Khan, S., Zaib Un, N., Ullah, I., & Amaral Júnior, A. T. D. (2022). PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants, 11, 345. https://doi.org/10.3390/plants11030345
    10. Arzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27, 197–205. https://doi.org/10.1007/s11274-010-0444-1
    11. Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28, 169–183. https://doi.org/10.1016/j.biotechadv.2009.11.005
    12. Baldotto, L. E. B., Baldotto, M. A., Canellas, L. P., Bressan-Smith, R., & Olivares, F. L. (2010). Growth promotion of pineapple ‘Vitória’ by humic acids and Burkholderia spp. during acclimatization. Revista Brasileira de Ciência do Solo, 34, 1593–1600. https://doi.org/10.1590/S0100-06832010000500012
    13. Bandurska, H. (2022). Drought stress responses: Coping strategy and resistance. Plants, 11, 922. https://doi.org/10.3390/plants11070922
    14. Bashan, Y., Holguin, G., & De-Bashan, L. (2004). Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances. Canadian Journal of Microbiology, 50, 521–577. https://doi.org/10.1139/w04-035
    15. Becker, D., Hoth, S., Ache, P., Wenkel, S., Roelfsema, M. R., Meyerhoff, O., Hartung, W., & Hedrich, R. (2003). Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Letters, 554(1–2), 119–126. https://doi.org/10.1016/S0014-5793(03)01118-9
    16. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11–18. https://doi.org/10.1007/s00253-009-2092-7
    17. Bhat, M. I., Rashid, A., Faisul-Ur, R., Mahdi, S. S., Haq, S. A., & Raies, A. B. (2010). Effect of Rhizobium and vesicular-arbuscular mycorrhizae fungi on green gram (Vigna radiata L. Wilczek) under temperate conditions. Research Journal of Agricultural Sciences, 1, 113–118. https://www.scirp.org/reference/referencespapers?referenceid=669377
    18. Bisleski, R. L. (1973). Phosphate transport and phosphate availability. Annual Review of Plant Physiology, 24, 225–252. https://doi.org/10.1146/annurev.pp.24.060173.001301
    19. Bittencourt, P. P., Alves, A. F., Ferreira, M. B., da Silva Irineu, L. E. S., Pinto, V. B., & Olivares, F. L. (2023). Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms, 11(2), 502. https://doi.org/10.3390/microorganisms11020502
    20. Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., Eberl, L., & Weisskopf, L. (2011). Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental Microbiology, 13, 3047–3058. https://doi.org/10.1111/j.1462-2920.2011.02582.x
    21. Brilli, F., Loreto, F., & Baccelli, I. (2019). Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Frontiers in Plant Science, 10, 264. https://doi.org/10.3389/fpls.2019.00264
    22. Broeckling, C. D. (2008). Root exudates regulate soil fungal community composition and diversity. Applied Environmental Microbiology, 74, 738–744. https://doi.org/10.1128/AEM.02188-07
    23. Brundrett, M. C., & Abbott, L. K. (1995). Mycorrhizal fungus propagules in the jarrah forest. I. Spatial variability in inoculum levels. New Phytologist, 131, 461–469. https://doi.org/10.1111/j.1469-8137.1995.tb03083.x
    24. Champawat, R. S., & Pathak, V. N. (1993). Effect of vesicular-arbuscular mycorrhizal fungi on growth and nutrition uptake of pearl millet. Indian Journal of Mycology and Plant Pathology, 23, 30–34. https://doi.org/10.1104/pp.102.3.771
    25. Chang, B., Yang, L., Cong, W., & Tang, Z. (2014). The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiology and Biochemistry, 77, 140–148. https://doi.org/10.1016/j.plaphy.2014.02.001
    26. Chen, H., & Jiang, J. G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18, 309–319. https://doi.org/10.1139/A10-014
    27. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., Cho, B. H., Yang, K. Y., Ryu, C. M., & Kim, Y. C. (2008). 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21, 1067–1075. https://doi.org/10.1094/MPMI-21-8-1067
    28. Cochard, H., Coll, L., Le Roux, X., & Améglio, T. (2002). Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiology, 128, 282–290. https://pmc.ncbi.nlm.nih.gov/articles/PMC148995/
    29. Cohen, A. C., Bottini, R., & Piccoli, P. N. (2008). Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regulation, 54, 97–103. https://doi.org/10.1007/s10725-007-9232-9
    30. Constable, G. A., & Hearn, A. B. (1978). Agronomic and physiological responses of soybean and sorghum crops to water deficits I. Growth, development and yield. Functional Plant Biology, 5, 159–167. https://doi.org/10.1071/PP9780159
    31. De Souza, R., Schoenfeld, R., & Passaglia, L. M. P. (2016). Bacterial inoculants for rice: Effects on nutrient uptake and growth promotion. Archives of Agronomy and Soil Science, 62, 561–569. https://doi.org/10.1080/03650340.2015.1065973
    32. Deubel, A., Gransee, G., & Merbach, W. (2000). Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. Journal of Plant Nutrition and Soil Science, 163, 387–392. https://doi.org/10.1002/1522-2624(200008)163:4
    33. Duchense, L. C., Peterson, R. L., & Ellis, B. E. (1989). The future of ectomycorrhizal fungi as biological control agents. Phytoprotection, 70, 51–57. https://doi.org/10.1007/978-3-642-85063-9_3
    34. Dumas, G. E., Guillaume, P., Tahiri, A. A., Gianinazzi-Pearson, V., & Gianinazzi, S. (1994). Changes in polypeptide patterns in tobacco roots by Glomus species. Mycorrhiza, 4, 215–221. https://link.springer.com/book/10.1007/978-94-017-0776-3
    35. Duponnois, R., Kisa, M., & Plenchette, C. (2006). Phosphate solubilizing potential of the nemato fungus Arthrobotrys oligospora. Journal of Plant Nutrition and Soil Science, 169, 280–282. https://doi.org/10.1002/jpln.200520551
    36. Dutton, V. M., & Evans, C. S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895. https://doi.org/10.1139/m96-114
    37. El-Komy, H. M., Hamdia, M. A., & El-Baki, G. K. A. (2003). Nitrate reductase in wheat plants grown under water stress and inoculated with Azospirillum spp. Biologia Plantarum, 46, 281–287. https://doi.org/10.1023/A:1022819114860
    38. El-Komy, M., & Hesham, A. (2004). Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technology and Biotechnology, 43, 19–27. https://www.ftb.com.hr/images/pdfarticles/2005/January-March/43-19.pdf
    39. Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology Environment Safety, 156, 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
    40. Fa Yuan, W., & Zhao Yong, S. (2008). Biodiversity of arbuscular mycorrhizal fungi in China: A review. Advances in Environmental Biology, 2, 31–39. https://www.aensiweb.com/old/aeb/2008/31-39.pdf
    41. Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the USA, 103, 626–631. https://doi.org/10.1073/pnas.0507535103
    42. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., & West, P. C. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. https://doi.org/10.1038/nature10452
    43. Fulchieri, M., & Frioni, L. (1994). Azospirillum inoculation on maize (Zea mays): Effect on yield in a field experiment in Central Argentina. Soil Biology and Biochemistry, 26, 921–924. https://doi.org/10.1016/0038-0717(94)90308-5
    44. Garg, S., Bhatnagar, A., Kalla, A., & Narula, N. (2001). In vitro nitrogen fixation, phosphate solubilization, survival and nutrient release by Azotobacter strains in an aquatic system. Bioresource Technology, 80, 101–109. https://doi.org/10.1016/s0960-8524(01)00081-5
    45. Geurts, R., & Bisseling, T. (2002). Rhizobium nod factor perception and signalling. The Plant Cell, 14, S239–S249. https://doi.org/10.1105/tpc.002451
    46. Ghosh, D., Gupta, A., & Mohapatra, S. (2019). A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World Journal of Microbiology and Biotechnology, 35(90). https://doi.org/10.1007/s11274-019-2659-0
    47. Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190, 63–68. https://doi.org/10.1006/jtbi.1997.0532
    48. Greacen, E. L., & Oh, J. S. (1972). Physics of root growth. Nat. New Biol., 235, 24–25. https://doi.org/10.1038/newbio235024a0
    49. Gull, M., Hafeez, F. E., Saleem, M., & Malik, K. A. (2004). Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Australian Journal of Experimental Agriculture, 44, 623–628. https://doi.org/10.1071/EA02218
    50. Gullino, P., Luca, B., & Federica, L. (2018). Linking multifunctionality and sustainability for valuing peri-urban farming: A case study in the Turin Metropolitan Area (Italy). Sustainability, 10(5), 1625. https://doi.org/10.3390/su10051625
    51. Habibi, A., Heidari, G., Sohrabi, Y., Badakhshan, H., & Mohammadi, K. (2011). Influence of bio, organic and chemical fertilizers on medicinal pumpkin traits. Journal of Medicinal Plants Research, 5, 5590–5597. http://www.academicjournals.org/JMPR
    52. Harb, A., Awad, D., & Samarah, N. (2015). Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions, 10, 109–116. https://doi.org/10.1080/17429145.2015.1033023
    53. Hart, M. M., & Reader, R. J. (2002). Host plant benefit from association with arbuscular mycorrhizal fungi: Variation due to differences in size of mycelium. Biology and Fertility of Soils, 36, 357–366. https://doi.org/10.1007/s00374-002-0539-4
    54. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7, 1456–1466. https://doi.org/10.4161/psb.21949
    55. Henri, F., Laurette, N. N., Annette, A., John, Q., Wolfgang, M., François-Xavier, E., & Dieudonné, E. (2008). Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. African Journal of Microbiology Research, 2, 171–178. https://www.internationalscholarsjournals.com/articles/solubilization-of-inorganic-phosphates-and-plant-growth-promotion-by-strains-of-pseudomonas-fluorescens-isolated-from-ac.pdf
    56. Hernández, I., Cela, J., Alegre, L., & Munné-Bosch, S. (2012). Antioxidant defenses against drought stress. In R. Aroca (Ed.), Plant responses to drought stress: From morphological to molecular features (pp. 231–258). Springer. https://doi.org/10.1007/978-3-642-32653-0_9
    57. Hilda, R., & Fraga, R. (2000). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–359. https://doi.org/10.1016/s0734-9750(99)00014-2
    58. Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 237, 173–195. https://doi.org/10.1023/A:1013351617532
    59. Hochberg, U., Windt, C. W., Ponomarenko, A., Zhang, Y. J., Gersony, J., Rockwell, F. E., & Holbrook, N. M. (2017). Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems. Plant Physiology, 174, 764–775. https://doi.org/10.1104/pp.16.01816
    60. Honma, M., & Shimomura, T. (1978). Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry, 42, 1825–1831. https://doi.org/10.1080/00021369.1978.10863261
    61. Hungria, M., Campo, R. J., Souza, E. M., & Pedrosa, F. O. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331, 413–425. https://doi.org/10.1007/s11104-009-0262-0
    62. Hussein, H. A. A., Mekki, B. B., Abd El-Sadek, M. E., & El Lateef, E. E. (2019). Effect of L-ornithine application on improving drought tolerance in sugar beet plants. Heliyon, 5, e02631. https://doi.org/10.1016/j.heliyon.2019.e02631
    63. Igual, J. M., Valverde, A., Cervantes, E., & Velázquez, E. (2001). Phosphate-solubilizing bacteria as inoculants for agriculture: Use of updated molecular techniques in their study. Agronomie, 21, 561–568. https://hal.science/hal-00886151/document
    64. Iqbal, S., Wang, X., Mubeen, I., Kamran, M., Kanwal, I., Díaz, G. A., Abbas, A., Parveen, A., Atiq, M. N., & Alshaya, H. (2022). Phytohormones trigger drought tolerance in crop plants: Outlook and future perspectives. Frontiers in Plant Science, 12, 3378. https://doi.org/10.3389/fpls.2021.799318
    65. Jeffries, A. (1987). Use of mycorrhiza in agriculture. Critical Reviews in Biotechnology, 5, 319–357. https://doi.org/10.3109/07388558709079476
    66. Jjemba, P. K., & Alexander, M. (1999). Possible determinants of rhizosphere competence of bacteria. Soil Biology and Biochemistry, 31, 623–632. https://doi.org/10.1016/S0038-0717(98)00168-0
    67. Jochum, M. D., McWilliams, K. L., Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A., & Jo, Y. K. (2019). Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Frontiers in Microbiology, 10, 2106. https://doi.org/10.3389/fmicb.2019.02106
    68. Junaid, M. D., Gokce, A. F., & Bostani, R. (2024). Global agricultural losses and their causes. Bulletin of Biological and Allied Science Research, 9(1), 66. https://doi.org/10.54112/bbasr.v2024i1.66
    69. Kang, S. M., Shahzad, R., Bilal, S., Khan, A. L., Park, Y. G., Lee, K. E., Asaf, S., Khan, M. A., & Lee, I. J. (2019). Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology, 19, 80. https://doi.org/10.1186/s12866-019-1450-6
    70. Kasim, W. A., Osman, M. E. H., Omar, M. N., & Salama, S. (2021). Enhancement of drought tolerance in Triticum aestivum L. seedlings using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bulletin of the National Research Centre, 45, 95. https://doi.org/10.1186/s42269-021-00546-6
    71. Kathiresan, G., Manickam, G., & Parameswaran, P. (1995). Efficiency of phosphobacteria addition on cane yield and quality. Cooperative Sugar, 26, 629–631. https://www.academia.edu/77310716/Bacterial_biofertilizers_for_sustainable_crop_production_a_review
    72. Kavamura, V. N., Santos, S. N., Silva, J. L. D., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & Melo, I. S. D. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168, 183–191. https://doi.org/10.1016/j.micres.2012.12.002
    73. Khan, A. L., Halo, B. A., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J., Al-Harrasi, A., & Lee, I. J. (2016). Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 21, 58–64. http://dx.doi.org/10.1016/j.ejbt.2016.02.001
    74. Khan, I. A., Ayub, N., Mirza, S. N., Nizami, S. M., & Azam, M. (2008). Synergistic effect of dual inoculation (vesicular-arbuscular mycorrhizae) on the growth and nutrient uptake of Medicago sativa. Pakistan Journal of Botany, 40, 939–945. https://www.researchgate.net/publication/235913809_Synergistic_Effect_of_Dual_Inoculation_Vesicular_Arbuscular_Mycorrhizae_on_the_Growth_and_Nutrients_Uptake_of_Medicago_sativa
    75. Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agronomy for Sustainable Development, 27, 29–43. https://doi.org/10.1051/agro:2006011
    76. Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE, 14, e0222302. https://doi.org/10.1371/journal.pone.0222302
    77. Khosro, M., & Yousef, S. (2012). Bacterial biofertilizers for sustainable crop production: A review. ARPN Journal of Agricultural and Biological Science, 7, 307–316. https://www.arpnjournals.com/jabs/research_papers/rp_2012/jabs_0512_396.pdf
    78. Kim, K. Y., Jordan, D., & McDonald, G. A. (1998). Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils, 26, 79–87. https://doi.org/10.1007/s003740050347
    79. Kpomblekou, K., & Tabatabai, M. A. (1994). Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science, 158, 442–453. https://journals.lww.com/soilsci/abstract/1994/15860/effect_of_organic_acids_on_release_of_phosphorus.6.aspx
    80. Kumar, A., & Verma, J. P. (2018). Does plant—microbe interaction confer stress tolerance in plants: A review? Microbiological Research, 207, 41–52. https://doi.org/10.1016/j.micres.2017.11.004
    81. Lee, K. E., & Pankhurst, C. E. (1992). Soil organisms and sustainable productivity. Australian Journal of Soil Research, 30, 855–892. http://dx.doi.org/10.1071/SR9920855
    82. Li, C., Li, L., Reynolds, M. P., Wang, J., Chang, X., Mao, X., & Jing, R. (2021). Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. Journal of Experimental Botany, 72, 5117–5133. http://dx.doi.org/10.1093/jxb/erab124
    83. Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13, 1318. https://doi.org/10.3390/su13031318
    84. McAfee, B. J., & Fortin, J. A. (1986). Comparative effects of the soil microflora on ectomycorrhizal inoculation of conifer seedling. New Phytologist, 108, 108–443. https://doi.org/10.1111/j.1469-8137.1988.tb04185.x
    85. Mohammadi Alagoz, S., Zahra, N., Hajiaghaei Kamrani, M., Asgari Lajayer, B., Nobaharan, K., Astatkie, T., Siddique, K. H. M., & Farooq, M. (2022). Role of root hydraulics in plant drought tolerance. Journal of Plant Growth Regulation, 1–16. https://research-repository.uwa.edu.au/en/publications/role-of-root-hydraulics-in-plant-drought-tolerance
    86. Moreno-Galván, A. E., Cortés-Patiño, S., Romero-Perdomo, F., Uribe-Vélez, D., Bashan, Y., & Bonilla, R. R. (2020). Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology, 147, 103367. https://doi.org/10.1016/j.apsoil.2019.103367
    87. Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 12, 18–23. https://doi.org/10.1007/BF00327716
    88. Narayanasamy, S., Thankappan, S., Kumaravel, S., Ragupathi, S., & Uthandi, S. (2023). Complete genome sequence analysis of a plant growth-promoting phylloplane Bacillus altitudinis FD48 offers mechanistic insights into priming drought stress tolerance in rice. Genomics, 115, 110550. https://doi.org/10.1016/j.ygeno.2022.110550
    89. Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental Experimental Botany, 97, 30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014
    90. Nessner Kavamura, V., Santos, S. N., da Silva, J. L., Parma, M. M., Aparecida Ávila, L., Visconti, A., Zucchi, T. D., Gouvêa Taketani, R., Andreote, F. D., & de Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168(3), 183–191. https://doi.org/10.1016/j.micres.2012.12.002
    91. Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie Agronomie Société et Environnement, 15, 327–337. https://popups.uliege.be/1780-4507/index.php?id=7578
    92. Nivetha, N., Lavanya, A. K., Vikram, K. V., Asha, A. D., Sruthi, K. S., Bandeppa, S., Annapurna, K., & Paul, S. (2021). PGPR-mediated regulation of antioxidants: Prospects for abiotic stress management in plants. In Plant Stress Physiology: From Genomics to Systems Biology (pp. 471–497). Springer. https://doi.org/10.1007/978-981-16-1350-0_23
    93. Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9, 712. https://doi.org/10.3390/agronomy9110712
    94. Olivares, F. L., Busato, J. G., De Paula, A. M., Da Silva Lima, L., Aguiar, N. O., & Canellas, L. P. (2017). Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 4, 30. https://doi.org/10.1186/s40538-017-0112-x
    95. Pantoja-Guerra, M., Valero-Valero, N., & Ramírez, C. A. (2023). Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chemical and Biological Technologies in Agriculture, 10, 6. https://doi.org/10.1186/s40538-022-00370-8
    96. Patil, P. L., & Medhane, N. S. (1994). Seed inoculation studies in gram (Cicer arietinum L.) with different strains of Rhizobium sp. Plant and Soil, 40, 221–223. https://doi.org/10.1007/bf00011425
    97. Ponmurugan, P., & Gopi, G. (2006). Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. Journal of Agronomy, 5, 600–604. https://doi.org/10.3923/ja.2006.600.604
    98. Poudel, M., Mendes, R., Costa, L. A. S., Bueno, C. G., Meng, Y., Folimonova, S. Y., Garrett, K. A., & Martins, S. J. (2021). The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. Frontiers in Microbiology, 12, 3058. https://doi.org/10.3389/fmicb.2021.743512
    99. Pyngrope, S., Bhoomika, K., & Dubey, R. S. (2013). Oxidative stress, protein carbonylation, proteolysis and antioxidative defense system as a model for depicting water deficit tolerance in Indica rice seedlings. Plant Growth Regulation, 69, 149–165. https://doi.org/10.1007/s10725-012-9758-3
    100. Rao, D. E., & Chaitanya, K. V. (2016). Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biologia Plantarum, 60, 201–218. https://doi.org/10.1007/s10535-016-0584-8
    101. Rasheed, A., Mahmood, A., Maqbool, R., Albaqami, M., Sher, A., Sattar, A., Khosa, G. B., Nawaz, M., Hassan, M. U., & Al-Yahyai, R. (2022). Key insights to develop drought-resilient soybean: A review. Journal of King Saud University – Science, 34, 102089. https://doi.org/10.1016/j.jksus.2022.102089
    102. Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339. https://doi.org/10.1016/s0734-9750(99)00014-2
    103. Rokhzadi, A., & Toashih, V. (2011). Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth promoting rhizobacteria. Australian Journal of Crop Science, 5, 44–48. https://www.scirp.org/reference/referencespapers?referenceid=3777753
    104. Rokhzadi, A., Asgharzadeh, A., Darvish, F., Nourmohammadi, G., & Majidi, E. (2008). Influence of plant growth-promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field condition. Agricultural and Food Sciences, 3, 253–257. https://www.semanticscholar.org/paper/Influence-of-plant-growth-promoting-rhizobacteria-Rokhzadi
    105. Rosas, S. B., André, S. J. A., Rovera, M., & Correa, N. S. (2006). Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis. Soil Biology and Biochemistry, 38, 3502–3505. https://doi.org/10.1016/j.soilbio.2006.05.008
    106. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100, 4927–4932. https://doi.org/10.1073/pnas.0730845100
    107. Saikia, S. P., & Jain, V. (2007). Biological nitrogen fixation with non-legumes: An achievable target or a dogma. Current Science, 92, 317–322. https://www.researchgate.net/publication/255620954_Biological_nitrogen_fixation_with_non-legumes_An_achievable_target_or_a_dogma
    108. Salomon, M. V., Bottini, R., De Souza Filho, G. A., Cohen, A. C., Moreno, D., Gil, M., & Piccoli, P. (2014). Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiologia Plantarum, 151, 359–374. https://doi.org/10.1111/ppl.12117
    109. Sashidhar, B., & Podile, A. R. (2010). Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology, 109(1), 1–12. https://doi.org/10.1111/j.1365-2672.2009.04654.x
    110. Schroth, M. N., & Hancock, J. G. (1981). Selected topics in biological control. Annual Review of Microbiology, 35, 453–476. https://doi.org/10.1146/annurev.mi.35.100181.002321
    111. Sgroy, V., Cassán, F., Masciarelli, O., Del Papa, M. F., Lagares, A., & Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 85, 371–381. https://doi.org/10.1007/s00253-009-2116-3
    112. Shanmugam, P. M., & Veeraputhran, R. (2000). Effect of organic manure, biofertilizers, inorganic nitrogen and zinc on growth and yield of rabi rice. Madras Agricultural Journal, 87(2), 87–90. https://doi.org/10.29321/MAJ.10.A00426
    113. Shehata, M. M., & El-Khawas, S. A. (2003). Effect of biofertilizers on growth parameters, yield characters, nitrogenous components, nucleic acids content, minerals, oil content, protein profiles and DNA banding pattern of sunflower (Helianthus annuus L. cv. Vedock) yield. Pakistan Journal of Biological Sciences, 6, 1257–1268. https://doi.org/10.3923/pjbs.2003.1257.1268
    114. Sheoran, S., Thakur, V., Narwal, S., Turan, R., Mamrutha, H. M., Singh, V., Tiwari, V., & Sharma, I. (2015). Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Applied Biochemistry and Biotechnology, 177, 1282–1298. https://doi.org/10.1007/s12010-015-1813-x
    115. Sohbat, Z. I. (2022). Non-photochemical quenching of chlorophyll fluorescence and its components: Recent advances. Journal of Life Science & Biomedicine, 4, 76–86. https://jlsbjournal.org/uploads/public_files/2022-07/10_chap.pdf
    116. Subrahmanyam, G., Kumar, A., Sandilya, S. P., Chutia, M., & Yadav, A. N. (2020). Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In Plant Microbiomes for Sustainable Agriculture (pp. 1–52). https://doi.org/10.1007/978-3-030-38453-1_1
    117. Sundara, B., Natarajan, V., & Hari, K. (2022). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane yields. Field Crops Research, 77, 43–49. https://doi.org/10.1016/S0378-4290(02)00048-5
    118. Sziderics, A. H., Rasche, F., Trognitz, F., Sessitsch, A., & Wilhelm, E. (2007). Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology, 53, 1195–1202. https://doi.org/10.1139/W07-082
    119. Tambekar, D. H., Gulhane, S. R., Somkuwar, D. O., Ingle, K. B., & Kanchalwar, S. P. (2009). Potential Rhizobium and phosphate solubilizers as biofertilizers from saline belt of Akola and Buldhana district, India. Research Journal of Agriculture and Biological Sciences, 5, 578–582. https://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2009/578-582.pdf
    120. Tao, G., Tian, S., Cai, M., & Xie, G. (2008). Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere, 18, 515–523. https://doi.org/10.1016/S1002-0160(08)60042-9
    121. Turner, N. C. (2017). Turgor maintenance by osmotic adjustment, an adaptive mechanism for coping with plant water deficits. Plant, Cell & Environment, 40, 1–3. https://doi.org/10.1111/pce.12839
    122. Valente Lima, J., Tinôco, R. S., Olivares, F. L., Moraes, A. J. G. D., Chia, G. S., & Silva, G. B. D. (2020). Hormonal imbalance triggered by rhizobacteria enhances nutrient use efficiency and biomass in oil palm. Scientia Horticulturae, 264, 109161. https://doi.org/10.1016/j.scienta.2019.109161
    123. Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6, 1–14. https://doi.org/10.1080/17429145.2010.535178
    124. Vazquez, P., Holguin, G., Puente, M., Cortes, A. E., & Bashan, Y. (2000). Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biology and Fertility of Soils, 30, 460–468. https://doi.org/10.1007/s003740050024
    125. Whitelaw, M. A. (2000). Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy, 69, 99–151. https://doi.org/10.1016/S0065-2113(08)60948-7
    126. Xiao, C. Q., Chi, R. A., Huang, X. H., & Zhang, W. X. (2008). Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecological Engineering, 33, 187–193. https://doi.org/10.1016/j.ecoleng.2008.04.001
    127. Yahya, A., & Azawi, S. K. A. (1998). Occurrence of phosphate solubilizing bacteria in some Iranian soils. Plant and Soil, 117, 135–141. https://doi.org/10.1007/BF02206266
    128. Yasmin, H., Bano, A., Wilson, N. L., Nosheen, A., Naz, R., Hassan, M. N., Ilyas, N., Saleem, M. H., Noureldeen, A., & Ahmad, P. (2022). Drought-tolerant Pseudomonas sp. showed differential expression of stress-responsive genes and induced drought tolerance in Arabidopsis thaliana. Physiologia Plantarum, 174, e13497. https://doi.org/10.1111/ppl.13497
    129. Zaddy, E., & Perevolosky, A. (1995). Enhancement of growth and establishment of oak seedlings by inoculation with Azospirillum brasilense. Forest Ecology and Management, 72, 81–83. https://www.academia.edu/33819891/
    130. Zaddy, E., Perevolosky, A., & Okon, Y. (1993). Promotion of plant growth by inoculation with aggregated and single-cell suspension of Azospirillum brasilense. Soil Biology and Biochemistry, 25, 819–823. https://doi.org/10.1007/s00248-004-0148-x
    131. Zhang, W., Xie, Z., Zhang, X., Lang, D., & Zhang, X. (2019). Growth-promoting bacteria alleviates drought stress of Glycyrrhiza uralensis through improving photosynthesis characteristics and water status. Journal of Plant Interactions, 14, 580–589. https://doi.org/10.1080/17429145.2019.1680752

Lascia un commento