Scopus article
Review | Vol. 9 Issue 4 (2026), e2026152 | Published in 10 September 2025
Domenico Prisa Aftab Jamal
https://10.31893/multirev.2026152
Abstract
Research into environmentally friendly methods for controlling nematodes in agricultural crops has gained significant momentum in recent years. This growing interest reflects a broader shift toward more ecologically responsible agricultural practices—ones that prioritize natural biological mechanisms, preserve soil fertility, and protect biodiversity. Increasing consumer demand for high-quality, chemical-free produce has further accelerated this transition. Among the many pests affecting crop production, phytoparasitic nematodes are some of the most destructive, particularly in vegetable crops, where they are responsible for substantial yield losses each year. Traditionally, synthetic pesticides have been the primary means of managing nematode infestations. However, their widespread use has led to considerable environmental concerns, including soil degradation, groundwater contamination, and harm to non-target organisms. Moreover, the effectiveness of many synthetic compounds diminishes over time due to soil interactions and the emergence of resistant nematode populations. Regulatory restrictions on soil fumigants—some of the few chemicals capable of penetrating deep into the soil—have also prompted the search for safer alternatives. As a result, research has increasingly focused on sustainable control strategies that integrate agronomic, biological, and natural solutions. Plant-based products, in particular, have shown considerable promise. These natural compounds exhibit strong nematicidal properties while maintaining a low environmental footprint. Their limited persistence in soil and low toxicity to humans, animals, and non-target plant species make them ideal candidates for sustainable pest management. Furthermore, the complex chemical makeup of plant-derived nematicides—often composed of multiple active ingredients—reduces the likelihood of nematodes developing resistance, a common issue with repeated synthetic pesticide applications. Numerous studies support the efficacy of these botanical alternatives. By preserving soil health and enhancing plant resilience, such approaches contribute not only to pest control but also to long-term agricultural sustainability and productivity.
References
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10, 531. https://doi.org/10.3390/plants10030531
Arancon, N. Q., Yardim, E., Edwards, C. A., & Lee, S. (2003). The trophic diversity of nematode communities in soils treated with vermicomposts. Pedobiologia, 47(5–6), 736–740. https://doi.org/10.1078/0031-4056-00234
Arshad, U., Naveed, M., Javed, N., Gogi, D., & Ali, M. A. (2020). Biochar application from different feedstocks enhances plant growth and resistance against Meloidogyne incognita in tomato. International Journal of Agriculture and Biology, 24, 961–968. https://doi.org/10.17957/IJAB/15.1522
Barbosa, P., Faria, J. M. S., Cavaco, T., Figueiredo, A. C., Mota, M., & Vicente, C. S. L. (2024). Nematicidal activity of phytochemicals against the root-lesion nematode Pratylenchus penetrans. Plants, 13(5), 726. https://doi.org/10.3390/plants13050726
Bar-Eyal, M., Sharon, E., & Spiegel, Y. (2006). Nematicidal activity of Chrysanthemum coronarium L. European Journal of Plant Pathology, 114, 427–433. https://doi.org/10.1007/s10658-006-0011-7
Benso, A., Paoletti, R., & Dalla Valle, E. (2018). Utilizzo di metaboliti secondari polifenolici in strategie di protezione e stimolazione degli apparati radicali delle colture. Atti Giornate Fitopatologiche, 1, 249–256. https://www.giornatefitopatologiche.it/it/elenco/24/2018/utilizzo-di-metaboliti-secondari-polifenolici-in-strategie-di-protezione-e-stimolazione-degli-apparati-radicali-delle-colture/4699
Carletti, B., & Maistrello, L. (2012). Il controllo dei nematodi nelle colture ortive: Prove in vitro con i tannini di castagno. Atti Accademia dei Georgofili, 339–344. https://www.georgofili.net/articoli/il-controllo-dei-nematodi-nelle-colture-ortive-prove-in-vitro-con-i-tannini-di-castagno/3248
Caroppo, S., Ambrogioni, L., & Capella, A. (2002). Valutazione dell’efficacia dell’azadiractina A (32 g/l) nel controllo di Meloidogyne incognita (Kofoid et White) Chitwood su pomodoro in ambiente protetto. Redia, 85, 121–130. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20220138762
Chitwood, D. J. (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology, 40(1), 221–249. https://doi.org/10.1146/annurev.phyto.40.032602.130045
Curto, G., Santi, R., & Dalla Valle, E. (2014). Efficacia di strategie integrate e di nuovi formulati ad azione nematocida per il contenimento dei nematodi galligeni in coltura di carota. Atti Giornate Fitopatologiche, 1, 337–346. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20193521091
El-Ansary, M. S. M., & Hamouda, R. A. (2014). Biocontrol of root-knot nematode infected banana plants by some marine algae. Russian Journal of Marine Biology, 40, 140–146. https://doi.org/10.1134/S1063074014020047
El-Eslamboly, A. A. S. A., Abd El-Wanis, M. M., & Amin, A. W. (2019). Algal application as a biological control method of root-knot nematode Meloidogyne incognita on cucumber under protected culture conditions and its impact on yield and fruit quality. Egyptian Journal of Biological Pest Control, 29, 18. https://doi.org/10.1186/s41938-019-0122-z
Germani, G., & Plenchette, C. (2005). Potential of Crotalaria species as green manure crops for the management of pathogenic nematodes and beneficial mycorrhizal fungi. Plant and Soil, 266, 333–342. https://doi.org/10.1007/s11104-005-2281-9
Godfrey, M. (2023). The effects of deficit irrigation on water use efficiency, yield and quality of drip-irrigated tomatoes grown under field conditions in Zimbabwe. Water SA, 49(4), 3935. https://doi.org/10.17159/wsa/2023.v49.i4.3935
Gonçalves Gardiano, C., Ferraz, S., Lopes, E. A., Ferreira, P. A., Amora, D. X., & Grassi de Freitas, L. (2009). Avaliação de extratos aquosos de várias espécies vegetais, aplicados ao solo, sobre Meloidogyne javanica (Treub, 1985) Chitwood, 1949. Semina: Ciências Agrárias, 30, 551–555. https://www.redalyc.org/pdf/4457/445744093004.pdf
Guastamacchia, F., Caprio, E., Giorgino, D., Bitonte, D., Pagnani, M., Guarnone, A., D’Errico, P., & Stillittano, V. (2022). Esperienze di difesa dai nematodi galligeni (Meloidogyne spp.) con azadiractina in orticoltura. Atti Giornate Fitopatologiche, 1, 245–252. https://www.giornatefitopatologiche.it/it/giornate-fitopatologiche/18/giornate-fitopatologiche-2022/66/
Gupta, R., & Sharma, N. K. (1993). A study of the nematicidal activity of allicin—An active principle in garlic, Allium sativum L., against root-knot nematode Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949. International Journal of Pest Management, 39, 390–392. https://doi.org/10.1080/09670879309371828
Hallmann, J., & Sikora, R. (1996). Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. European Journal of Plant Pathology, 102, 155–162. https://doi.org/10.1007/BF01877102
Hewlett, T. E., Hewlett, E. M., & Dickinson, D. (1997). Response of Meloidogyne spp., Heterodera glycines and Radopholus similis to tannic acid. Journal of Nematology, 29(4S), 737–741. https://pubmed.ncbi.nlm.nih.gov/19274278/
Jatala, P. (1986). Biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 24, 453–489. https://doi.org/10.1146/annurev.py.24.090186.002321
Jiang, Y., Zhou, H., Chen, L., Yuan, Y., Fang, H., Luan, L., Chen, Y., Wang, X., Liu, M., Li, H., Peng, X., & Sun, B. (2018). Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Frontiers in Microbiology, 9, 2803. https://doi.org/10.3389/fmicb.2018.02803
Kalaiselvam, I., & Devaraj, A. (2011). Effect of root exudates of Tagetes sp. on egg hatching behavior of Meloidogyne incognita. International Research Journal of Pharmacy, 2, 93–96. https://irjponline.org/index.php/irjp/article/view/1886
Karakas, M., & Bolukbasi, E. (2019). A review: Using marigolds (Tagetes spp.) as an alternative to chemical nematicides for nematode management. International Journal of Advanced Engineering, Management and Science, 5(9), 9. https://doi.org/10.22161/ijaems.59.3
Khan, M. R., Tanveer, F. R., & Shahid Anwar, A. M. (2023). Nematode problems in vegetables and ornamentals under protected cultivation and their sustainable management. In Sustainable management of nematodes in agriculture and horticulture (pp. 685–706). Academic Press. https://doi.org/10.1016/B978-0-323-91226-6.00002-X
Khan, S. A., Abid, M., & Hussain, F. (2015). Nematicidal activity of seaweeds against Meloidogyne javanica. Pakistan Journal of Nematology, 33, 195–203. https://researcherslinks.com/current-issues/Nematicidal-activity-of-seaweeds-against-Meloidogyne-javanica/30/1/5835
Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
Kokalis-Burelle, N., Vavrina, C. S., Reddy, M. S., & Kloepper, J. W. (2003). Amendment of muskmelon transplant media with plant growth-promoting rhizobacteria: Effects on seedling quality, disease, and nematode resistance. HortTechnology, 13(3), 476–482. https://doi.org/10.21273/HORTTECH.13.3.0476
Ladurner, E., Fiorentini, F., Lucchi, A., Piergiacomi, M., & Benuzzi, M. (2018). Efficacy of a new nematicide based on garlic extract for the control of root-knot nematodes on horticultural crops. Atti Giornate Fitopatologiche, 1, 167–174. https://doi.org/10.19263/REDIA-100.17.12
Lalit, K., Usha, D., Bansa, S., & Srivastava, G. K. (2014). Isolation of root exuded allelochemicals of marigold (Tagetes erecta) and their effect on the mortality and egg hatching of root knot nematode (Meloidogyne javanica). Journal of Food Legumes, 27, 166–169. https://pmc.ncbi.nlm.nih.gov/articles/PMC3593261/
Laquale, S., Avato, P., Argentieri, M. P., Candido, V., Perniola, M., & D’Addabbo, T. (2020). Nematicidal activity of Echinacea species on the root-knot nematode Meloidogyne incognita. Journal of Pest Science, 93, 1397–1410. https://doi.org/10.1007/s10340-020-01232-8
Maistrello, L., Vaccari, G., & Sasanelli, N. (2013). Nematicidal effect of chestnut tannin solutions on the carrot cyst nematode Heterodera carotae Jones. Future IPM in Europe. Book of Abstracts, 166. https://hdl.handle.net/11380/959897
Mekete, T., Hallmann, J., Kiewnick, S., & Sikora, R. (2009). Endophytic bacteria from Ethiopian coffee plants and their potential to antagonise Meloidogyne incognita. Nematology, 11, 117–127. https://doi.org/10.1163/156854108X398462
Mhatre, P. H., Karthik, C., Kadirvelu, K., Venkatasalam, E. P., Lekshmanan, D., Srinivasan, S., Ramkumar, G., Saranya, C., & Shanmuganathan, R. (2018). Plant growth-promoting rhizobacteria (PGPR): A potential alternative tool for nematodes biocontrol. Biocatalysis and Agricultural Biotechnology, 17, 119–128. https://www.semanticscholar.org/paper/Plant-growth-promoting-rhizobacteria-(PGPR)%3A-A-tool-Mhatren
Mian, G., Godoy, H. I., Shelby, R., Rodriguez-Kábana, R., & Morgan-Jones, G. (1982). Chitin amendments for control of Meloidogyne arenaria in infested soil. Nematropica, 12, 71–84.
Mihoub, A., Mesnoua, M., Touzout, N., Zeguerrou, R., Siabdallah, N., Benchikh, C., & Černý, J. (2024). Mitigation of detrimental effects of salinity on sweet pepper through biochar-based fertilizers derived from date palm wastes. Phyton, 93(11). https://doi.org/10.32604/phyton.2024.057536
Molinari, S. (2011). Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides. Plant Cell Reports, 30, 311–323. https://doi.org/10.1007/s00299-010-0972-z
Molinari, S. (2012). Resistance and virulence in plant–nematode interactions. In Nematodes: Morphology, functions and management strategies (pp. 59–81). https://doi.org/10.13140/2.1.2358.8803
Mostafa, F. A. M., Taha, H. A., & Abou El-Atta, D. A. (2017). Potentials of compost tea of certain botanicals for minimizing root-knot and reniform nematodes infection and altering chemical constituents in eggplant. International Journal of Entomology and Nematology, 3, 62–69. https://doi.org/10.21608/zjar.2019.47065
Mostafanezhad, H., Sahebani, N., Nourinejhad, S., & Zarghani, S. (2014). Induction of resistance in tomato against root-knot nematode Meloidogyne javanica with salicylic acid. Journal of Crop Protection, 3, 499–508. https://doi.org/10.1001.1.22519041.2014.3.4.14.5
Nasiou, E., & Giannakou, I. O. (2018). Effect of geraniol, a plant-based alcohol monoterpene oil, against Meloidogyne javanica. European Journal of Plant Pathology, 152, 701–710. https://doi.org/10.1007/s10658-018-1512-x
Nicol, J. M., Turner, S. J., Coyne, D. L., Den Nijs, L., Hockland, S., & Maafi, Z. T. (2011). Current nematode threats to world agriculture. In Genomics and molecular genetics of plant–nematode interactions (pp. 21–43). Springer Netherlands. https://doi.org/10.1007/978-94-007-0434-3_2
Ntalli, N. G., & Caboni, P. (2012). Botanical nematicides: A review. Journal of Agricultural and Food Chemistry, 60(40), 9929–9940. https://doi.org/10.1021/jf303107j
Oka, Y. (2010). Mechanisms of nematode suppression by organic soil amendments: A review. Applied Soil Ecology, 44, 101–115. https://doi.org/10.1016/j.apsoil.2009.11.003
Oka, Y., Tkachi, N., & Mor, M. (2007). Phosphite inhibits development of the nematodes Heterodera avenae and Meloidogyne marylandii in cereals. Phytopathology, 97, 396–404. https://doi.org/10.1094/PHYTO-97-4-0396
Pérez, M. P., Navas-Cortés, J. A., Pascual-Villalobos, M. J., & Castillo, P. (2003). Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. Plant Pathology, 52, 395–401. https://doi.org/10.1046/j.1365-3059.2003.00859.x
Perry, R. N., & Moens, M. (2013). Plant nematology. CABI. https://doi.org/10.1111/aab.12103
Poveda, J., Abril-Urías, P., & Escobar, C. (2020). Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11, 992. https://doi.org/10.3389/fmicb.2020.00992
Poveda, J., Martínez-Gómez, A., Fenoll, C., & Escobar, C. (2021). The use of biochar for plant pathogen control. Phytopathology, 111(8), 1490–1499. https://doi.org/10.1094/PHYTO-06-20-0248-RVW
Renco, M., Ntalli, N., & D’Addabbo, T. (2021). Short-time impact of soil amendments with Medicago plant materials on soil nematofauna. Plants, 10, 145. https://doi.org/10.3390/plants10010145
Renco, M., Sasanelli, N., Papajova, I., & Maistrello, L. (2012). Nematicidal effect of chestnut tannin solutions on the potato cyst nematode Globodera rostochiensis (Woll.) Barhens. Helmintologia, 49, 108–114. https://doi.org/10.2478/s11687-012-0022-1
Roberts, P. A. (2007). Nematode resistance in vegetable crops. In The Haworth press (pp. 223–257). https://www.taylorfrancis.com/chapters/edit/10.1201/9781003578314-9/nematode-resistance-vegetable-crops-philip-roberts
Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91, 687–693. https://doi.org/10.1094/PHYTO.2001.91.7.687
Siddiqui, M. A., & Alam, M. M. (1987). Control of plant parasitic nematodes by intercropping with Tagetes minuta. Nematologia Mediterranea, 18, 205–211. https://journals.flvc.org/nemamedi/article/view/85623
St. Martin, C. C. G. (2014). Potential of compost tea for suppressing plant diseases. CAB Reviews, 9, 1–38. https://doi.org/10.1079/PAVSNNR20149032
Stirling, G. R. (1988). Biological control of plant parasitic nematodes. CAB International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781780644158.0000
Tikoria, R., Kaur, A., & Ohri, P. (2022). Potential of vermicompost extract in enhancing the biomass and bioactive components along with mitigation of Meloidogyne incognita-induced stress in tomato. Environmental Science and Pollution Research, 29(37), 56023–56036. https://doi.org/10.1007/s11356-022-19757-z
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. https://doi.org/10.1038/nature01014
Valdes, Y., Viaene, N., Perry, R. N., & Moens, M. (2011). Effect of the green manures Sinapis alba, Brassica napus and Raphanus sativus on hatching of Globodera rostochiensis. Nematology, 13(8), 965–975. https://doi.org/10.1163/138855411X571803
You, X., Tojo, M., Ching, S., & Wang, K. H. (2018). Effects of vermicompost water extract prepared from bamboo and kudzu against Meloidogyne incognita and Rotylenchulus reniformis. Journal of Nematology, 50, 569–578. https://doi.org/10.21307/jofnem-2018-054
Zinovieva, S. V., Vasyukova, N. I., Udalova, Z. V., Gerasimova, N. G., & Ozeretskovskaya, O. L. (2011). Involvement of salicylic acid in induction of nematode resistance in plants. Biology Bulletin of the Russian Academy of Sciences, 38, 453. https://doi.org/10.1134/S1062359011050177








