Pubblicazione Scopus: Applications and contributions of zeolites to addressing current environmental challenges

Review Article | Vol. 9 Issue 6 (2026), e2026303 | Published in 26 November 2025

Authors: Domenico Prisa Aftab Jamal Muhammad Farhan Saeed

Link: https://10.31893/multirev.2026303
Keywords: corroborant sustainable agriculture plant quality biopesticides

Abstract
Environmental concerns such as greenhouse gas emissions, unsustainable agricultural practices, and improper livestock manure management have intensified the search for eco-friendly solutions. Among these, zeolite-rich rocks referred to as zeolitites have emerged as promising materials for pollution control and sustainable agriculture. Zeolitites are naturally occurring crystalline aluminosilicate minerals with high cation-exchange capacity, strong adsorption potential, and exceptional water management properties. Italian chabazite-rich zeolitites, in particular, are rich in potassium (K) and low in sodium (Na), making them especially suitable for agricultural use. Studies have shown that incorporating zeolitites into soil or growing substrates improves nutrient retention, reduces leaching, enhances moisture availability, and decreases dependence on synthetic fertilizers and irrigation. These benefits contribute to improved crop productivity and quality, while enhancing environmental resilience. Despite these advantages, the role of zeolitites under challenging climatic conditions—such as drought or salinity—remains underexplored. This review synthesizes current knowledge on the agricultural and environmental applications of zeolitites, clarifies the scientific use of the term zeolitite, and highlights their potential in promoting sustainable, high-efficiency farming systems.

References
Aainaa, H. N., Haruna Ahmed, O., Ab Majid, N. M., & Reinhart, K. O. (2018). Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea mays L. cultivated on an acid soil. PLoS ONE, 13, e0204401. https://doi.org/10.1371/journal.pone.0204401
Abou-Khaled, A., Hagan, R. M., & Davenport, D. C. (1970). Effects of kaolinite as a reflective antitranspirant on leaf temperature, transpiration, photosynthesis, and water-use efficiency. Water Resources Research, 6, 280–289. https://doi.org/10.1029/WR006i001p00280
Ahmed, O. H., Sumalatha, G., & Muhamad, A. N. (2010). Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. International Journal of the Physical Sciences, 5, 2393–2401. http://www.academicjournals.org/IJPS
Al-Busaidi, A., Yamamoto, T., Inoue, M., Eneji, A. E., Mori, Y., & Irshad, M. (2008). Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. Journal of Plant Nutrition, 31, 1159–1173. https://doi.org/10.1080/01904160802134434
Alimi, T., Ajewole, O. C., Olubode-Awosola, O. O., & Idowu, E. O. (2007). Organic and inorganic fertilizer for vegetable production under tropical conditions. Journal of Agricultural and Rural Development, 1, 120–136. https://hdl.handle.net/10568/40809
Allen, E. R., & Ming, D. W. (1995). Recent progress in the use of natural zeolites in agronomy and horticulture. In D. W. Ming & F. A. Mumpton (Eds.), Natural zeolites (pp. 477–490). https://doi.org/10.2138/rmg.2001.45.18
Andronikashvili, T. G., Kadava, M. A., & Gamisonia, M. K. (1995). Effect of natural zeolites on microbe landscape of some soils in Georgia. Abstracts of the Sofia International Zeolite Meeting, 111–112. https://doi.org/10.1023/A:1004744612234
Andrzejewska, A., Diatta, J., Spizewski, T., Krzesinski, W., & Smurzynska, A. (2017). Application of zeolite and bentonite for stabilizing lead in a contaminated soil. Inżynieria Ekologiczna, 18, 1–6. https://doi.org/10.12912/23920629/74950
Baghbani-Arani, A., Jami, M. G., Namdari, A., & Karami Borz-Abad, R. (2020). Influence of irrigation regimes, zeolite, inorganic and organic manures on water use efficiency, soil fertility and yield of sunflower in a sandy soil. Communications in Soil Science and Plant Analysis, 51(6), 711–725. https://doi.org/10.1080/00103624.2020.1729791
Bandura, L., Franus, M., Panek, F., Woszuk, A., & Franus, W. (2015). Characterization of zeolites and their use as adsorbents of petroleum substances. Przemysł Chemiczny, 94, 323–327. https://doi.org/10.15199/62.2015.3.11
Bandura, L., Panek, R., Madej, J., & Franus, W. (2021). Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel, 283, 119173. https://doi.org/10.1016/j.fuel.2020.119173
Barbarick, K. A., Lai, T. M., & Eberl, D. D. (1990). Exchange fertilizer (phosphate rock plus ammonium-zeolite) effects on sorghum sudangrass. Soil Science Society of America Journal, 54, 911–916. https://doi.org/10.2136/sssaj1990.03615995005400030050x
Belviso, C. (2020). Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes, 8(7), 820. https://doi.org/10.3390/pr8070820
Bikkinina, L. H., Ezhkov, V. O., Faizrakhmanov, R. N., Gazizov, R. R., Ezhkova, A. M., Fayzrakhmanov, D., Ziganshin, B., Nezhmetdinova, F., & Shaydullin, R. (2020). Effect of zeolites on soil modification and productivity. BIO Web of Conferences, 17, 00117. https://doi.org/10.1051/bioconf/20201700117
Bouzo, L., Lopez, M., Villegas, R., Garcia, E., & Acosta, J. A. (1994). Use of natural zeolites to increase yields in sugarcane crop minimizing environmental pollution. In Proceedings of the 15th World Congress of Soil Science (pp. 695–701). Acapulco, Mexico.
Cadar, O., Dinca, Z., Senila, M., Torok, A. I., Todor, F., & Levei, E. A. (2021). Immobilization of potentially toxic elements in contaminated soils using thermally treated natural zeolite. Materials, 14(14), 3777. https://doi.org/10.3390/ma14143777
Calzarano, F., Valentini, G., Arfelli, G., Seghetti, L., Manetta, A. C., Metruccio, E. G., & Di Marco, S. (2019). Activity of Italian natural chabasite-rich zeolitites against grey mould, sour rot and grapevine moth, and effects on grape and wine composition. Phytopathologia Mediterranea, 58, 307–321. https://doi.org/10.14601/Phytopathol_Mediter-10618
Cataldo, E. C., Salvi, L. S., Paoli, F. P., Fucile, M. F., Masciandaro, G. M., Manzi, D. M., Masini, C. M. M., & Mattii, G. B. M. (2021). Application of zeolites in agriculture and other potential uses: A review. Agronomy, 11(8), 1547. https://doi.org/10.3390/agronomy11081547
Cieśla, J., Kędziora, K., Gluszczyk, J., Szerement, J., Józefaciuk, G., Franus, W., & Franus, M. (2019). Environmentally friendly modifications of zeolite to increase its sorption and anion exchange properties. Materials, 12(19), 3213. https://doi.org/10.3390/ma12193213
Collins, F., Rozhkovskaya, A., Outram, J. G., & Millar, G. J. (2020). A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials, 291, 109667. https://doi.org/10.1016/j.micromeso.2019.109667
Czarna-Juszkiewicz, D., Kunecki, P., Panek, R., Madej, J., & Wdowin, M. (2020). Impact of fly ash fractionation on the zeolitization process. Materials, 13, 1035. https://doi.org/10.3390/ma13051035
Czuma, N., Baran, P., Franus, W., Zabierowski, P., & Zarębska, K. (2019). Synthesis of zeolites from fly ash with the use of modified two-step hydrothermal method and preliminary SO₂ sorption tests. Adsorption Science & Technology, 37, 61–76. https://doi.org/10.1177/0263617418810607
De Campos Bernardi, A. C., Oliveira, P. P. A., De Melo Monte, M. B., & Souza-Barros, F. (2013). Brazilian sedimentary zeolite use in agriculture. Microporous and Mesoporous Materials, 167, 16–21. https://doi.org/10.1016/j.micromeso.2012.06.051
De Smedt, C., Someus, E., & Spanoghe, P. (2015). Potential and actual uses of zeolites in crop protection. Pest Management Science, 71, 1355–1367. https://doi.org/10.1002/ps.3999
De Smedt, C., Steppe, K., & Spanoghe, P. (2017). Beneficial effects of zeolites on plant photosynthesis. Advanced Materials Science, 2, 1–11. https://doi.org/10.15761/AMS.1000115
Desutter, T. M., & Pierzynski, G. M. (2005). Evaluation of soils for use as liner materials: A soil chemistry approach. Journal of Environmental Quality, 34, 951–962. https://doi.org/10.2134/jeq2004.0295
Dong-Suk, L., Sang-Sun, L., Hyun-Jin, P., Hye In, Y., Se-In, P., Jin-Hyeob, K., & Woo-Jung, C. (2019). Fly ash and zeolite decrease metal uptake but do not improve rice growth in paddy soils contaminated with Cu and Zn. Environment International, 129, 551–564. https://doi.org/10.1016/j.envint.2019.04.032
Doni, S., Gispert, M., Peruzzi, E., Macci, C., Mattii, G. B., Manzi, D., Masini, C. M., & Grazia, M. (2020). Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use and Management, 36(1), 1–11. https://doi.org/10.1111/sum.12665
Eroglu, N., Emekci, M., & Athanassiou, C. G. (2017). Applications of natural zeolites on agriculture and food production. Journal of the Science of Food and Agriculture, 97(11), 3487–3499. https://doi.org/10.1002/jsfa.8312
Eslami, M., Khorassani, R., Fotovat, A., & Halajnia, A. (2020). NH₄⁺–K⁺ co-loaded clinoptilolite as a binary fertilizer. Archives of Agronomy and Soil Science, 66(1), 33–45. https://doi.org/10.1080/03650340.2019.1591617
Farooqi, Z. U. R., Ahmad, I., Abdul Qadir, A., Murtaza, G., Rafiq, S., Jamal, A., & Mancinelli, R. (2022). Zeolite-assisted immobilization and health risks of potentially toxic elements in wastewater-irrigated soil under brinjal (Solanum melongena) cultivation. Agronomy, 12(10), 2433. https://doi.org/10.3390/agronomy12102433
Filcheva, E. G., & Tsadilas, C. D. (2002). Influence of clinoptilolite and compost on soil properties. Communications in Soil Science and Plant Analysis, 33(3–4), 595–607. https://doi.org/10.1081/CSS-120002766
Foley, J. A. (2012). Si può nutrire il mondo e proteggere il pianeta? Le Scienze, 512. https://download.kataweb.it/mediaweb/pdf/espresso/scienze/2011/12/29/145208407-52744064-54e4-4539-ae1c-99a42ad5ec6a.pdf
Georgiev, D., & Zagora, S. (2009). Synthetic zeolites: Structure, classification, current trends in zeolite synthesis: Review. In Proceedings of the International Science Conference (pp. 1–6). https://www.researchgate.net/publication/322211658
Ghadamnan, E., Nabavi, S. R., & Abbas, M. (2019). Nano LTA zeolite in water softening process: Synthesis, characterization, kinetic studies and process optimization by response surface methodology (RSM). Journal of Water Environment and Nanotechnology, 4, 119–128. https://doi.org/10.22090/jwent.2019.02.004
Gholamhoseini, M., Ghalavand, A., Khodaei-Joghan, A., Dolatabadian, A., Zakikhani, H., & Farmanbar, E. (2013). Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil and Tillage Research, 126, 193–202. https://doi.org/10.1016/j.still.2012.08.002
Glenn, D. M., Erez, A., & Puterka, G. J. (2003). Particle films affect carbon assimilation and yield in ‘Empire’ apple. Journal of the American Society for Horticultural Science, 128, 356–362. https://doi.org/10.21273/JASHS.128.3.0356
Hall, A. (1998). Zeolitisation of volcaniclastic sediments: The role of temperature & pH. Journal of Sedimentary Research, 68, 739–745. https://doi.org/10.2110/jsr.68.739
Hermassi, M., Valderrama, C., Font, O., Moreno, N., Querol, X., Batis, N. H., & Cortina, J. L. (2020). Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. Science of the Total Environment, 731, 139002. https://doi.org/10.1016/j.scitotenv.2020.139002
Ippolito, J. A., Tarkalson, D. D., & Lehrsch, G. A. (2011). Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Science, 176(3), 136–142. https://doi.org/10.1097/SS.0b013e31820e4063
Jacobs, P. A., Flanigen, E. M., Jansen, J. C., & Van Bekkum, H. (2001). Introduction to zeolite science and practice (pp. 11–35). Elsevier. https://api.pageplace.de/preview/DT0400.9780080887111_A23529435/preview-9780080887111_A23529435.pdf
Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH₄⁺ retention capacity. Journal of Hazardous Materials, 169(1–3), 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.052
Jifon, J. L., & Syvertsen, J. P. (2003). Kaolin particle film applications can increase photosynthesis and water use efficiency of ‘Ruby Red’ grapefruit leaves. Journal of the American Society for Horticultural Science, 128, 107–112. https://doi.org/10.21273/JASHS.128.1.0107
Kalita, B., Bora, S. S., & Gogoi, B. (2020). Zeolite: A soil conditioner. International Journal of Current Microbiology and Applied Science, 9(1), 1184–1206. https://doi.org/10.20546/ijcmas.2020.901.133
Karami, S., Hadi, H., Tajbaksh, M., & Modarres-Sanavy, S. A. M. (2020). Effect of zeolite on nitrogen use efficiency and physiological and biomass traits of amaranth (Amaranthus hypochondriacus) under water-deficit stress conditions. Journal of Soil Science and Plant Nutrition, 20(3), 1427–1441. https://doi.org/10.1007/s42729-020-00223-z
Kavoosi, M. (2007). Effects of zeolite application on rice yield, nitrogen recovery, and nitrogen use efficiency. Communications in Soil Science and Plant Analysis, 38, 69–76. https://doi.org/10.1080/00103620601093652
Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B., Johir, M. A. H., Karmakar, A. K., Zhou, J. L., Ahmed, M. B., & Moni, M. A. (2020). Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2, 100019. https://doi.org/10.1016/j.envadv.2020.100019
Khalid, S., Shahid, M., Khan Niazi, N., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. https://doi.org/10.1016/j.gexplo.2016.11.021
Khaliq, A., Shehzad, M., Huma, M. K., Tahir, M. M., Javeed, H. M. R., Saeed, M. F., & Mancinelli, R. (2024). Synergistic effects of urea, poultry manure, and zeolite on wheat growth and yield. Soil Systems, 8(1), 18. https://doi.org/10.3390/soilsystems8010018
Khan, M. Z. H., Islam, M. R., Nahar, N., Al-Mamun, M. R., Khan, M. A. S., & Matin, M. A. (2021). Synthesis and characterization of nanozeolite-based composite fertilizer for sustainable release and use efficiency of nutrients. Heliyon, 7(1), e06091. https://doi.org/10.1016/j.heliyon.2021.e06091
Kotoulas, A., Agathou, D., Triantaphyllidou, I., Tatoulis, T., Akratos, C., Tekerlekopoulou, A., & Vayenas, D. (2019). Zeolite as a potential medium for ammonium recovery and second cheese whey treatment. Water, 11(1), 136. https://doi.org/10.3390/w11010136
Kralova, M., Hrozinkova, A., Ruzek, P., Kovanda, F., & Kolousek, D. (1994). Synthetic and natural zeolites affecting the physicochemical soil properties. Rostlinna Vyroba, UZPI: Praha, Czech Republic, 126–195. https://doi.org/10.30574/wjarr.2023.19.2.1626
Kumar Bansiwal, A., Suresh Rayalu, S., Kumar Labhasetwar, N., Ashok Juwarkar, A., & Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Journal of Agricultural and Food Chemistry, 54(13), 4773–4779. https://doi.org/10.1021/jf060034b
Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., & Saleem, M. (2016). Synthesis and characterization of zeolite-based nanocomposite: An environmentally friendly slow release fertilizer. Microporous and Mesoporous Materials, 232, 174–183. https://doi.org/10.1016/j.micromeso.2016.06.020
Latifah, O., Haruna Ahmed, O., & Muhamad Abdul Majid, N. (2017). Enhancing nitrogen availability from urea using clinoptilolite zeolite. Geoderma, 306, 152–159. https://doi.org/10.1016/j.geoderma.2017.07.012
Lee, D. S., Lim, S. S., Park, H. J., Yang, H. I., Park, S. I., Kwak, J. H., & Choi, W. J. (2019). Fly ash and zeolite decrease metal uptake but do not improve rice growth in paddy soils contaminated with Cu and Zn. Environment International, 129, 551–564. https://doi.org/10.1016/j.envint.2019.04.032
Li, Y., Li, L., & Yu, J. (2017). Applications of zeolites in sustainable chemistry. Chem, 3(6), 928–949. https://doi.org/10.1016/j.chempr.2017.10.009
Li, Z., Zhang, Y., & Li, Y. (2013). Zeolite as slow release fertilizer on spinach yields and quality in a greenhouse test. Journal of Plant Nutrition, 36, 1496–1505. https://doi.org/10.1080/01904167.2013.790429
Mahmoud, A. W. M., & Swaefy, H. M. (2020). Comparison between commercial and nano NPK in presence of nano zeolite on sage plant yield and its components under water stress. Agriculture, 66, 24–39. https://doi.org/10.2478/agri-2020-0003
Manjaiah, K. M., Mukhopadhyay, R., Paul, R., Datta, S. C., Kumararaja, P., & Sarkar, B. (2019). Clay minerals and zeolites for environmentally sustainable agriculture. In Modified clay and zeolite nanocomposite (pp. 309–329). Elsevier. https://doi.org/10.1016/B978-0-12-814617-0.00008-6
Martínez, T. L. M., Ivanova, S., Louis, B., & Odriozola, J. A. (2019). Synthesis and identification methods for zeolites and MOFs. In Zeolites and metal-organic frameworks (pp. 25–52). https://doi.org/10.1515/9789048536719-003
Mazur, G. A., Medvid, G. K., & Grigora, T. I. (1984). Use of natural zeolites for increasing the fertility of light textured soils. Pochvovedenie, 10, 70–77. https://doi.org/10.1002/JSFA.8312
Mihok, F., Macko, J., Orinak, A., Orinakov, R., Kova, K., Sisakov, K., Petru, O., & Kosteck, Z. (2020). Controlled nitrogen release fertilizer based on zeolite clinoptilolite: Study of preparation process and release properties using molecular dynamics. Current Research in Green and Sustainable Chemistry, 3, 100030. https://doi.org/10.1016/j.crgsc.2020.100030
Ming, D. W., & Mumpton, F. A. (1989). Zeolites in soils. In Mineralogy and soil environment (pp. 873–911). https://doi.org/10.2138/rmg.2001.45.11
Mohammad, M. J., Karam, N. S., & Al-Lataifeh, N. K. (2005). Response of croton grown in a zeolite-containing substrate to different concentrations of fertilizer solution. Communications in Soil Science and Plant Analysis, 35, 2283–2297. https://doi.org/10.1081/LCSS-200030637
Mondal, M., Biswas, B., Garai, S., Sarkar, S., Banerjee, H., Brahmachari, K., Bandyopadhyay, P. K., Maitra, S., Brestic, M., Skalicky, M., Ondrisik, P., & Hossain, A. (2021). Zeolites enhance soil health, crop productivity and environmental safety. Agronomy, 11, 448. https://doi.org/10.3390/agronomy11030448
Passaglia, E. (2019). Zeolititi in agricoltura: Mitigazione delle problematiche ambientali conseguenti pratiche agricole e alla gestione dei reflui zootecnici. Informatore Agrario, 125. https://www.ibs.it/zeoliti-in-agricoltura-mitigazione-delle-libro-elio-passaglia/e/9788872204009
Polat, E., Karaca, M., Demir, H., & Onus, A. N. (2004). Use of natural zeolite (clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant, 12, 183–189. https://www.scirp.org/reference/referencespapers?referenceid=957982
Prisa, D. (2018). Italian chabazitic-zeolitite and effective microorganisms for the qualitative improvement of olive trees. Atti della Società Toscana di Scienze Naturali, 125, 13–17. https://doi.org/10.2424/ASTSN.M.2018.2
Prisa, D. (2019a). Effective microorganisms and chabazitic-zeolites for the improvement quality of Echinopsis hybrids. Asian Academic Research Journal of Multidisciplinary, 6(2), 23–34. www.asianacademicresearch.org
Prisa, D. (2019b). Germination of vegetable and grassland species with micronized chabazitic-zeolites and endophytic fungi. IOSR Journal of Agriculture and Veterinary Science, 12, 32–37. https://doi.org/10.9790/2380-1205013237
Prisa, D. (2020a). Particle films: Chabazitic zeolites with added microorganisms in the protection and growth of tomato plants (Lycopersicon esculentum L.). GSC Advanced Research and Reviews, 4(2), 01–08. https://doi.org/10.30574/gscarr.2020.4.2.0059
Prisa, D. (2020b). Chabazitic zeolites with earthworm humus added to the growing media to improve germination and growth of horticultural plants. International Journal of Scientific Research in Multidisciplinary Studies, 6(5), 24–31. https://www.researchgate.net/publication/342529370_Chabatitic_Zeolites_With_Earthworm_Humus_Added_To_The_Growing_Media_To_Improve_Germination_and_Growth_of_Horticultural_Plants
Prisa, D. (2020c). Comparison between sterilized zeolite and natural zeolite in the cactus pear (Opuntia ficus-indica L. Mill.) growing. GSC Advanced Research and Reviews, 4(3), 007–014. https://doi.org/10.30574/gscarr.2020.5.1.0080
Prisa, D., Burchi, G., Antonetti, M., & Teani, A. (2011). Use of organic or inorganic substrates for reducing the use of peat and improving the quality of bulbs and inflorescences in Asiatic lily. Acta Horticulturae, 900, 143–148. https://doi.org/10.17660/ActaHortic.2011.900.17
Rakhimol, K. R., Thomas, S., & Kalarikkal, N. K. J. (2021). Nanotechnology in controlled release fertilizers. In Controlled release fertilizers for sustainable agriculture (pp. 169–181). Elsevier. https://doi.org/10.1016/B978-0-12-819555-0.00010-8
Ramesh, K., & Reddy, D. D. (2011). Zeolites and their potential uses in agriculture. In Zeolites in agriculture (pp. 219–241). Elsevier. https://doi.org/10.1016/B978-0-12-386473-4.00004-X
Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T., & Mierzwa-Hersztek, M. (2021). Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production, 311, 127461. https://doi.org/10.1016/j.jclepro.2021.127461
Türk, M., Bayram, G., Budakli, E., & Çelik, N. (2006). A study on effects of different mixtures of zeolite with soil rates on some yield parameters of alfalfa (Medicago sativa L.). Journal of Agronomy, 5, 118–121. https://docsdrive.com/pdfs/ansinet/ja/2006/118-121.pdf
Wang, B., Chu, C., Wei, H., Zhang, L., Ahmad, Z., Wu, S., & Xie, B. (2020). Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environmental Pollution, 267, 115411. https://doi.org/10.1016/j.envpol.2020.115411
Yuvaraj, M., & Subramanian, K. S. (2018). Development of slow release Zn fertilizer using nano-zeolite as carrier. Journal of Plant Nutrition, 41(3), 311–320. https://doi.org/10.1016/j.envpol.2020.115411

Un ringraziamento speciale all’azienda Zeolite-Italia e a Cave Pian di Rena per la collaborazione. Quando si parla di zeoliti un pensiero va sempre al mio caro amico Elio Passaglia, uno dei più grandi in questo campo.

Lascia un commento